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Abstract

Near Infrared (NIR) spectroscopy is seen as a very powerful tool in a variety of applications involving powder
characterisation. Here we deal with a typical pharmaceutical application of powder blend monitoring. A D-optimal
experimental design is used to cover the 85–115% range of the target formulation which is comprised of the active
component at 3.5% w/w, Microcrystalline Cellulose (Avicel PH102) at 62%, Dibasic Calcium Phosphate Anhydrous
at 31.5%, Sodium Starch Glycolate (Explotab) at 2%, and 1% Magnesium Stearate. A miniature Flobin blender has
been modified to enable the use of a fibre optic probe for on-line NIR spectral data collection. The experiments were
successful in detecting spectral changes which eventually converged to constant variance. While the NIR spectrum of
a powdered sample is rich in information which is representative of both the physical and chemical characteristics of
the sample, it is at times difficult to select the appropriate mathematical treatments in order to extract the desired
information. This article investigates several possible pre-treatments (including detrending (DT), standard normal
variates (SNV), second derivatives, and the combination of SNV and DT) together with several ways in establishing
blend homogeneity, which includes the running block standard deviation, dissimilarity calculations and principal
components analysis (PCA). The focus of this work is to investigate qualitative tools of analysis for blend
homogeneity determinations, while future work will focus on quantitative data interpretation. © 1998 Elsevier Science
B.V. All rights reserved.

Keywords: Near infrared spectroscopy; Pharmaceutical analysis; Blending; Process control; SIMCA; On-line analysis;
Experimental design

1. Introduction

Near Infrared (NIR) spectroscopy is a powerful
analytical technique with a wide array of applica-
tions in the pharmaceutical industry [1–3]. More
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recently, considerable interest has been shown in
using NIR spectroscopy for the on-line and off-
line determination of powder blend homogeneity
[4–7]. Part I in this series of publications describes
the system design and integration. In this applica-
tion of on-line blend homogeneity determination
we have extended the traditional approaches by
incorporating a constrained D-optimal experi-
mental design which covers the 85–115% range of
the blend components. The data set generated in
this way will be used to investigate both qualita-
tive and quantitative approaches to the data treat-
ment. While the focus here will be on the
qualitative approaches, a future publication will
concentrate on the feasibility of using existing
quantitative algorithms (Part III in the series).

Pharmaceutical companies devote a great deal
of time, labour and equipment to the process of
creating homogeneous powder blends. Blending
can be described as a combination of: (i) diffu-
sion; the redistribution of particles by the small
scale ‘random’ movement of individual particles
relative to one another; (ii) convection; the move-
ment of groups of adjacent particles from one
place to another; and (iii) shear; the change in
configuration of ingredient particle locations
through the formation of slip places in the mix-
ture [4]. The ideal mix has a homogeneous distri-
bution of all the components throughout the
blender [8]. The homogeneity of a blend, in the
traditional pharmaceutical sense, addresses only
the distribution uniformity of the active drug
substance while assuming that the excipients are
also evenly distributed. The potential power of
this type of on-line approach to homogeneity
determinations is that the assumption of excipient
homogeneity will be removed since all compo-
nents of the blend mixture will contribute to the
resultant NIR spectrum and are thus measured
implicitly.

The role of the excipients in the final product is
a significant one, in that they solubilise, flavour
and fashion medicinal agents into efficacious and
appealing dosage forms while also improving
characteristics such as flowability and tabletting
properties [9]. The typical blending procedure for
formulations includes charging a blender, blend-
ing for a pre-determined length of time, stopping

the blender, and manually removing samples
which are representative of the blender contents.
The samples are then sent to a laboratory and
analysed with traditional methods such as UV/
VIS spectroscopy or High Performance Liquid
Chromatography. The most time consuming por-
tion of the blending process is not the actual
blending, but often the analysis that must be
performed to establish homogeneity of the drug
substance in the blend. This analysis is not only
time consuming but may be subject to errors
induced by sampling methods. The elimination of
these two issues (analysis time and sampling er-
rors) is decidedly of benefit to the pharmaceutical
businesses.

A Flobin blender has been modified to accom-
modate a fibre optic probe which is in contact
with the components being blended, and coupled
to a NIR spectrophotometer. Spectral informa-
tion about the formulation is collected during the
blending process. This article describes the experi-
mental design of the blender runs carried out
together with the various algorithms used to eval-
uate the data collected. The objectives were to
evaluate the information content of the data col-
lected using qualitative approaches such as stan-
dard deviation and dissimilarity calculation,
principal component analysis or model-free profil-
ing, as well as investigating classification as a
means to determine the blending end points. An
additional aim is to better understand the practi-
cal implications and requirements of implement-
ing this type of technique to routine operations
within the pharmaceutical environment.

Table 1
Target formulation of the product powder blend

Quantity, mg g−1Name of component
(%)

34.720 (3.472)Active
620.380 (62.028)Microcrystalline cellulose (Avicel)

Dibasic Ca phosphate anhydrous 315.000 (31.500)
(DCP)

Sodium starch glycolate (Explotab) 20.000 (2.000)
10.000 (1.000)Magnesium sterate
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Table 2
Experimental design of blend components each covering the 85–115% of the target formulation range (exculding Avicel which is
used as a filter in the design)

DCP ExplotabAvicelExp. no. ActiveExp. name Run order

0.0170.270.6796671 0.0333334B1 10
0.0366667 0.676333 0.27 0.0172 B2 17

0.0230.270.6736673 0.0333334B3 19
0.27 0.0234 B4 15 0.0366667 0.670333

0.0170.3660.5836675 0.0333334B5 11
0.0366667 0.580333 0.366 0.0176 B6 2

0.366 0.0230.5743337 0.0366667B7 13
0.0333334 0.577667 0.366 0.0238 B8 7

0.0230.3660.5719 0.03aB9 18
0.04 0.673 0.27 0.01710 B10 3

0.366 0.0170.57711 0.04B11 9
0.667 0.2712 B12 1 0.0230.04
0.681 0.2713 B13 12 0.03 0.019

0.3660.583 0.02114 0.03B14 8
0.651 0.30215 B15 14 0.03 0.017

0.0230.3340.61316 0.03B16 4
0.035 0.627 0.318 0.0217 B17b 20

0.020.3180.62718 0.035B18b 16
0.627 0.31819 B19b 6 0.035 0.02

0.020.3180.62720 0.035B20b 5

a According to design should be 0.04, but 0.03 actual weight used.
b Target composition.

2. Experimental

The target formulation for this product and
investigation is given in Table 1. All the spectral
data collected in this study was completed prior to
the addition of magnesium stearate. The experi-
mental design, manufacturing process and instru-
ment set-up are discussed in more detail below.

2.1. Experimental design of blends

Classical experimental designs, such as factorial
designs are well known but often require a large
number of experiments. Furthermore they are in-
appropriate for mixture designs where the experi-
mental region is constrained or irregular. One
approach to developing calibration sets from a list
of possible experiments is to use the D-optimal
criteria. This involves selecting a number of sam-
ples that maximise the determinant of (XTX).
Here, a constrained D-optimal mixture design has
been employed. All components within the formu-

lation, excluding microcrystalline cellulose, have
been varied from 85–115% of intent. The micro-
crystalline cellulose is used as a filler to ensure
total composition sums to unity. The experiments
obtained with this design are listed in Table 2,
which shows the randomisation of the blend runs
and the individual component compositions.

2.2. Manufacturing process

The manufacturing process for the Product
blend can be described as having two phases and
is shown graphically in Fig. 1. Phase I consists of
the initial charging and mixing of blend compo-
nents for a period of 5 min. At the end of this
phase the blend mixture is transferred into a
Fitzmill and undergoes a milling step (Speed:
Medium, Knives: Forward). At the completion of
the milling step, the mixture goes through a sieve
step (Screen 24183) with the purpose of nominally
delumping the contents. The mixture is then re-
turned to the Flobin and Phase II (or post-screen)
blending is resumed for an additional 25 min.
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Fig. 1. Flow diagram of the blending process.

Fig. 2. Instrument and blender operating configuration.
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2.3. Instrumentation

The automated on-line blender system employs
a NIRSystems 6500 monochrometer (NIRSys-
tems, Silver Spring, MD) for spectral acquisition.
The spectrophotometer is coupled to the blending
vessel by means of a fibre-optic which is housed in
a bearing. The bearing has been suitably engi-
neered to allow the blender to rotate while the
fibre-optic itself remains stationary. For the
Flobin blender this equates to a rotational point
from one top corner to the diagonally opposite
top corner. An optical shaft encoder reports the
position of the blender to a custom built elec-
tronic interface device by utilising a zero datum
pulse from the encoder. This rotational position is
then converted into a seven bit binary format and
output to the digital I/O board in the control PC
via the parallel port. The PC sends control com-
mands to the electronic interface to start and stop
blender rotation and instruct the motor to rotate
at the one of 12 pre-set rotational speeds (5–60
rpm). The spectrophotometer and blender set-up
are shown in Fig. 2. The rotational speed of the
blender selected for this study was 10 rpm. The
spectral acquisition is triggered from the LabView
software via dynamic data exchange (DDE) com-
munication with the spectrophotometer WINSAS
software. More specific details of the instrument/
blender interface can be found in reference [5].

2.4. Spectral acquisition

The on-line spectral data acquisition using the
fibre-optic probe configuration was operated in a
discrete stop-start mode such that spectral acqui-
sition was triggered only when the blender was

Table 3
Time sequence describing the points at which the spectral data
was collected

Time (s) Total processing time (s)No. of scans

0 1 0
330 30

6060 3
9090 3

1203120
3150 150
3180 180

210 2103
3 240240

270 3 270
3300 300
1Post-screen 300

30 3 330
60 3 360

390 390
4203120

3180 480
3240 540

6003300
6603360
7203420

3480 780
3540 840
3600 900
3720 1020

840 3 1140
960 12603
1080 13803
1200 15003

3 16201320
31440 1740

18601560 3
19801680 3

3 21001800

stationary. A total of 20 scans were co-added to
produce the final spectrum covering the wave-
length range 1100–2500 nm at 2 nm intervals.
One spectrum was collected immediately after the
blender was charged with the individual compo-
nents. At each time point after that, the blender
was stopped, three separate spectra were col-
lected, each after a single rotation of the blender.
The blender rotation was restarted until the next
spectral acquisition point. During the spectral ac-
quisition, the blender was in an inverted position
which is shown in Fig. 3. The time interval be-
tween triplicate scans, varied depending on theFig. 3. Fibre-optic probe interface with the Flobin blender.
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stage of the blending process. As shown previ-
ously in Fig. 1, the blending process is undertaken
in two phases. During Phase I, the time interval is
30 s between triplicate scans. After the screening
step, an initial scan is taken once, and then the
triplicate scans are resumed for the remainder of
the blending time. The time interval between trip-
licate scans increases as the blending proceeds.
The total number of spectra collected in this way
was 98 per blending experiment. The actual spec-
trum collection time points are listed in Table 3.
The Total Processing Time (listed in column 3 of

Table 3) was used as the reference time axis for all
the batch comparisons as it is representative of
the entire processing time.

In addition to the spectral data collected during
the designed blend runs, NIR spectra were col-
lected on the individual blend constituents. The
typical spectrum obtained in this way is shown in
Fig. 4. This figure shows both the raw spectral
data and the individual components after a sec-
ond derivative transform has been applied in or-
der to show some of the spectral differences which
are more difficult to see in the raw spectral
format.

2.5. Software

Several software packages have been used
throughout this work, starting with LabView ver-
sion 3.1 for instrument control (National Instru-
ments, Austin, TX), Winsas version 1.09 for
spectral data acquisition (NIRSystems, Silver
Spring, MD), the constrained D-optimal experi-
ments were designed using Modde for Windows,
Version 2 (Umerti, Sweden). The data analysis
was carried out in Matlab, Version 4.21c (Math-
works, Natick, MA) and also Piroutte, Version
1.21 (Infometrix, Seattle, WA). In addition to the
two data analysis packages used, Masterkey ver-
sion 1.00 (Infometrix, Seattle, WA) was used for
file format conversion from Winsas to a flat-
ASCII format suitable for both Matlab and
Pirouette.

3. Data analysis

The term data analysis is used to cover multiple
activities including the mathematical pre-treat-
ments or transforms performed on the collected
spectral data prior to any data interpretation as
such. Depending on the purpose of the applica-
tion, the user may or may not be interested in the
spectral contributions originating from the physi-
cal characteristics of the sample. Where these
characteristics are important, the user may choose
to work with the raw spectral data, otherwise
some pre-treatment or pre-processing is usually
carried out. The sections below briefly describeFig. 4. NIR spectral data of formulation components.
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Fig. 5. Graphical representation of the moving block standard deviation calculation for blend homogeneity evaluation.

the pre-processing options incorporated into this
study, together with the algorithms used to evalu-
ate the blend homogeneity after the selected pre-
processing is carried out.

3.1. Spectral pre-processing

3.1.1. Raw spectral data
Even though an exorbitant amount of effort is

directed toward the evaluation of appropriate pre-
processing techniques and algorithms which per-
tain to NIR spectroscopic data, there are still a
significant number of applications where inspec-
tion of the raw spectral data may be very infor-
mative. Specifically in blend homogeneity
determinations where both the physical and chem-
ical characteristics of the blend components can
provide useful information in establishing or eval-
uating blend homogeneity. Calculations on raw
spectral data are therefore included here as one of
the viable options for data interpretation.

3.1.2. Detrending (DT) [10]
The simplest forms of spectral pre-processing

aim at corrections for baseline differences. This
includes both linear offsets or, as is the case with
NIR spectroscopy, non-linear approximations of

the baseline. The DT transformation is in essence
a quadratic baseline correction. The spectra are
fitted to a quadratic function which is then sub-
tracted from the original spectrum.

xDT
i,k =xi,k− x̃i,k=xi,k− (a+b ·k+c ·k2) (1)

Here, a, b and c are constants, i is the spectrum
index, k is the wavelength index. The quadratic
approximation of Eq. (1) is then subtracted from
the original spectrum. The corrected spectra have
zero mean and non-zero variance. This pre-pro-
cessing strategy is applied to individual spectra,
i.e. the baseline correction is calculated for every
spectrum individually.

3.1.3. Standard normal 6ariates (SNV) [10]
Another quite popular way of dealing with the

baseline is to perform one of the many mean-cen-
tring operations available. The SNV transforma-
tion is slightly different in that it requires that the
mean of the individual spectrum data points (x̄i)
be subtracted from the spectrum and then divided
by the standard deviation (si) of the same spec-
trum (Eq. (2)).

xSNV
i,k = (xi,k− x̄i)/si (2)
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Fig. 6. NIR raw spectral data of Blendc20. (a) Entire blend
run. (b) First four scans of run. (c) Remaining 94 scans of run.

The corrected spectra have zero mean and vari-
ance equal to one. The advantage of an approach
like SNV is that the transformation is applied to
individual spectra rather than the mean calculated
for a group of spectra.

3.1.4. Second deri6ati6es
Although several types of derivatives are possi-

ble, in practice the second derivative is encoun-
tered more often than not when dealing with NIR
spectroscopic data. The advantage of using the
second derivative is that both the offset and drift
components of the spectra, due to the physical
nature of the sample, are minimised. A second
derivative calculation, in this case a Savitzky-Go-
lay [11] variation, was employed. In this way the
spectral contributions resulting from the physical
properties of the sample are effectively handled.

3.1.5. Standard normal 6ariates (SNV):
detrending (DT)

Since the SNV transformation deals only with
the baseline offset but not the curvature of the
baselines encountered with NIR reflectance spec-
troscopy, it was decided to couple the SNV and
DT transformations. In this way, both the offset
and curvature of the baselines would be handled
and would serve as a good comparison to the
second derivative approach to pre-processing.

3.2. Batch profiling tools

3.2.1. Mean standard de6iation 6ersus blend time
The most intuitively obvious way to evaluate

the rate of change of a process is to calculate the
standard deviation over some interval of that
process. As the process becomes more stable or
reproducible, the standard deviation would ap-
proach zero. With a multivariate process measure-
ment such as NIR spectroscopy, the above
concept can be modified to accomplish essentially
the same task. First, a window size is selected to
encompass a sufficient amount of information
with which to evaluate the state of the process
without diminishing the information content by
making the window too large. The standard devi-
ation of the absorbance for each wavelength is
calculated over the nine spectra, resulting in a
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Fig. 7. Examples of spectral pre-processing with Blendc20. (a) Raw data; (b) DT; (c) SNV; (d) Second derivative; (e) SNV:DT.
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Fig. 8. Examples of blend homogeneity evaluation using the mean standard deviation with Blendc20 (wavelength range used:
1100–2500 nm). (a) Raw data; (b) DT; (c) SNV; (d) Second derivative; (e) SNV:DT.
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Fig. 9. Examples of blend homogeneity evaluation using the dissimilarity calculated against a target spectrum (times=1620, 1740
and 1860 s) with Blendc20 (wavelength range used: 1100–2500 nm). (a) Raw data; (b) DT; (c) SNV; (d) Second derivative; (e)
SNV:DT.
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Fig. 10. Dissimilarity of Blendc20 with the pure component
spectra (wavelength range used: 1100–2500 nm).

be collected prior to a blend run in order to have
the capability of calculating spectral dissimilarity
in real-time. In practical terms this generally
means that one blend run needs to be sacrificed in
order to collect the target spectra, thereafter apply-
ing the analysis dynamically. Alternatively, if
equivalence can be established between a small
scale synthetic mix of the appropriate composition
and the full-scale ‘real’ blend mixture, the possibil-
ity exists of pre-determining the target spectrum.
This approach would enable the user to collect the
target spectrum ahead of time and thus make
possible dynamic homogeneity evaluation from
the first run. To date, there have been no literature
reports on scale up of blending processed using
NIR spectroscopy.This is currently under investi-
gation in this laboratory.

3.2.2.2. Dissimiarity of indi6dual spectra when com-
pared to indi6iual pure component. As previously
stated, the traditional approach focuses completely
on the active drug component of the blend mixture
for the determination of homogeneity. While this
approach is widely accepted, the extent of mixing
of the remaining components could have signifi-
cant impact on the tabletting or dissolution prop-
erties for example. The calculation of the extent of
dissimilarity of a spectrum collected during a blend
run when compared to the spectra of the individ-
ual components can provide insight into the extent
of homogeneity for each of the individual compo-
nents in the mixture. The advantage of this type of
approach is that spectra on the pure individual
blend components can be collected quickly and
easily prior to any full-scale blending runs, after
which dynamic evaluation of extent of homogene-
ity can be carried out. The dissimilarity is calcu-
lated by normalising the spectra collected during
the blender run (xi,k), as well as either the target
spectra (ti,k) of the pure component spectra (pi,k) to
unit length. The normalised blend spectra (xN

i,k) are
then projected orthogonally onto the normalised
target spectra, tN

i,k (or pure spectra, pN
i,k) using the

Gram-Schmidt orthogonalisation procedure [12]
(Eq. (3)).

Dissi=xN
i,k− (xN

i,k× (tN
i,k)T)× tN

i,k (3)

standard deviation spectrum. The pooled standard
deviation (over all wavelengths) of the standard
deviation spectrum is reported as a single value.
The process is actually depicted graphically in Fig.
5. The mean standard deviation is then plotted
against the process or blending time.

3.2.2. Dissimilarity 6ersus blend time
The ideal application would be to calculate a

theoretical target spectrum from the individual
component spectra and calculate the dissimilarity
of the on-line spectra in real time compared to the
theoretical target spectrum. In practice, this con-
cept is difficult to achieve since the mixing of
different powder constituents does not conform to
the linear additivity requirement, i.e. the sum of
the individual component spectra does not equal
the mixture spectrum. There are two slightly more
practical ways of evaluating the similarity or dis-
similarity of a target spectrum.

3.2.2.1. Dissimilarity of indi6idual spectra when
compared to an a6erage set of scans considered to
ha6e reached homogeneity. This deals with the
sample matrix as an entity rather than dealing with
the individual components of the mixture. Concep-
tually this is a very feasible approach, that has a
lot of potential for being applied dynamically.
However, the target spectra (or spectrum) need to
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Fig. 11. Blendc20 evaluation with the moving block standard deviation calculation over the wavelength range 1500–1800 nm.
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Fig. 12. Examples of Blendc20 evaluation with a variety of pre-processing options (wavelength range use: 1500–1800 nm).
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Fig. 13. Dissimilarity calculation with respect to the individual component pure spectra with a wavelength range of 1500–1800 nm
with the listed pre-processing transformation.



S.S. Sekulic et al. / J. Pharm. Biomed. Anal. 17 (1998) 1285–13091300

Fig. 14. Principal component plot of Blendc20 plotted in the
space defined by the first three principal components (second
derivative transform, 1100–2300 nm).

of analysis since the decomposition needs to be
performed on the entire set of spectra collected
during a blend run. However, it is included here
as it is considered to be a tool for qualitative
analysis which does not require a reference tech-
nique to be used.

The algorithm used for this calculation is based
upon the Singular Value Decomposition al-
gorithm contained in MATLAB. Consider the
matrix X (dimensions i×k) which contains the
collected NIR spectra arranged in rows such that
each row represents one time point in the blend
monitoring process. The matrix X is then decom-
posed into three matrices (Eq. (4)):

X=USVT (4)

where U represents the scores, S is a diagonal
matrix of the square root of the eigenvalues of
XTX and XXT, V contains the loadings and T
indicates the transpose. The values in the S matrix
are ordered such that s1\s2\ ...\sn, i.e. the first
principal component describes the direction of

The length of the vector orthogonal to the target
spectrum is used as a measure of dissimilarity.
The calculated dissimilarity values are plotted
against blend time and the profiles examined for
steady state conditions which would indicate that
the process has reached homogeneity.

3.2.3. Principal component analysis (PCA) [13]
Generally considered to be a retrospective form

Fig. 15. Plot of the first principal component score vector against the sample number (corresponds to spectrum number), after a
second derivative transform over the 1100–2300 nm range.
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Fig. 16. PCA plot of the designed experiment spectra decom-
posed with replicate scans of the individual pure components
projected into a space defined by the first three principal
components.

Fig. 17. PCA plot of the four target blend runs (second
derivative transform over 1500–1800 nm) projected into the
space defined by the first three principal components.

component spectra in the data set, the PCA de-
composition is in effect being guided by the extre-
mum points which are the pure components of the
mixture. These extremum points would define all
the possible mixtures of the individual compo-
nents with the target formulation which would be
located at a distance proportional to the concen-
tration of the individual extremum point compo-
nent. Once again, since linear additivity is rarely
observed in practice for powder systems, this con-
cept does not hold mathematically and can gener-
ally only be used as a guide. This will be
investigated in more detail in the quantitative
section of this work and will not be discussed in
more detail here.

3.2.5. Soft independent modelling of class analogy
(SIMCA)

The goal of SIMCA is reliable classification of
unknown samples. This is accomplished by per-
forming measurements on a set of training sam-
ples and creating a principal component model
for each class in the set. For blend monitoring
purposes, the procedure would be to identify the
target spectra which define the blending end point
and construct a SIMCA model on that set of
spectra. The object is to then monitor the progress
of a blend and compare the individual scans
during the blend run with the cluster of target
spectra used for the SIMCA model. In theory, the
blend end point cluster will be consistent from run
to run, but in practice this would need to be
investigated and confirmed.

The SIMCA approach requires that a PCA
decomposition is performed for each class of com-
pounds in the calibration or training set of sam-
ples which contain the target blend spectra. For
any one class, construct a model based on n
principal components, such that Tn contains the
score vectors and Ln contains the n loading vec-
tors (Eq. (5)).

X0 =TnL
T
n (5)

The n principal components are used to recon-
struct the matrix X containing the desired spectra.
After the reconstruction, the difference between
the original and reconstructed matrices can be
calculated according to (Eq. (6)):

greatest variance encountered in the response
space, the next principal component describes the
next greatest amount of variance and so on.

3.2.4. Guided principal component analysis (G-
PCA)

Once again, this type of analysis is done retro-
spectively. Conceptually this is exactly the same as
regular PCA, however, by including the pure
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Fig. 18. PCA plot showing Blendc1 and Blendc10 compared against the four replicate target blends (17, 18, 19 and 20).

e=X−X0 =X−TnL
T
n (6)

The residual variance of the target class is there-
fore (Eq. (7)):

S2
0=%

i

%
k

(ei,k)2

((i−n−1)(k−n))
(7)

where, i indicates the number of samples in the
class, k is the number of variables or wavelengths
and n is the number of principal components used
in the reconstruction of X.

For each scan collected during the blending
process, the measured response (in this case the
spectrum) of the sample is projected onto the
eigenvectors of the class, and thus the sample
score vector is calculated (Eq. (8)):

t0 u=xuLu (8)

where, xu is the spectrum and t0 u is the score vector
(the sample’s new coordinates on the eigenvec-
tor axes) of sample u. It is now possible to cal-
culate the difference of the reconstructed spec-
trum (x̃u= t0 uLT

n ) with that of the original raw

spectrum (Eq. (9)):

eu=xu− t0 uLT
n (9)

This enables the calculation of the sample residual
variance (Eq. (10)):

s2
u=%

i

%
k

(e(u)i,k
)2

(k−n)
(10)

An F-test is then used to test the hypothesis that
the sample residual variance is significantly differ-
ent from the target class residual variance, or not,
according to (Eq. (11)):

s2
0=%

i

%
k

(ei,k)2

((i−n−1)(k−n))
(11)

If the blend sample variance is found to be signifi-
cantly different, the sample does not belong to the
target class. However, if the sample is not signifi-
cantly different, it is assumed to belong to that
class and the blend is considered to be homoge-
neous. Note that all the F-tests are performed at
a pre-defined and specified confidence level.
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Fig. 19. SIMCA model prediction of the four target blend runs.

Fig. 20. SIMCA prediction of Blendc19 with a model constructed from the blend endpoint for Blendc20 using one principal
component.
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Fig. 21. SIMCA distance plot for model constructed using Active data 95, 100 and 105% of target composition, predicting the
calibration data followed by the 85 and 115% of target data.

4. Results and discussion

4.1. Spectral pre-processing

A total of four blend runs were carried out with
the target formulation. As an example of a target
blend formulation Blendc20 was selected to
show the typical responses observed throughout
the study which incorporated a total of 20 de-
signed blends. One of the first observations is
shown in Fig. 6 where the raw spectral data is
plotted over the entire wavelength range of 1100–
2500 nm. Part (a) of the figure shows the spectral
data collected over the entire blend run, part (b)
shows that the majority of the observable change
occurs during the first four scans, while the last
portion of the figure demonstrates a significantly
smaller visual difference in the remaining 94 spec-
tra collected during the run. It is however, un-
likely that the blend is homogeneous after only 30

s of blending. This demonstrates the need for
further mathematical pre-processing of the col-
lected spectral data.

The same test case, Blendc20, is used to con-
trast the pre-processing algorithms listed above,
with the resultant spectra shown in Fig. 7. With
all the pre-processing algorithms, the raw spectral
observation is confirmed in that the greatest
amount of variability is observed with the first
four scans collected during the run. This is also
observed for the other 19 blender runs in the
study. Most blends will be stratified at the begin-
ning of the blending process as a result of the
charging procedure whereby the probe is likely to
be exposed to only one of the blend components.
The other observation is that the transformed
second derivative spectra have an observably
greater noise contribution in the 2300–2500 nm
wavelength range. This too is an expected result
based on previous studies and is easily confirmed
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by visual inspection. Note the different scaling
on the y-axis that results from the different pre-
processing algorithms and closer examination of
the remaining transforms also shows an increase
in noise in the same region. All the transforms
accomplish their respective tasks, and at this
stage it is not possible to evaluate the utility of
one against the other without looking at the
blend profiles.

4.2. Blend profiling

In order to evaluate the utility of the pre-pro-
cessing algorithms, it is necessary to profile the
entire blend run in order to determine or estab-
lish any significant deviations in performance
when the respective transforms are applied.
Clearly the most definitive way to establish
whether the application of a pre-processing tech-
nique removes relevant information or not is to
compare the technique with a reference method.
In this paper we are focusing only on qualitative
modes of analysis and will not consider a refer-
ence technique which will be the focus of part III
of this series of work. The resultant profile of the
blending process will be dependent on both the
pre-processing transform used as well as the
wavelength range taken into consideration.
Given the obvious noise content of the spectra
that results after the second derivative transfor-
mation (15 point), it is not likely that a combina-
tion of full spectral range and second derivative
transform will provide optimum blend profiles.

Once again using Blendc20 as a typical
target blend, the mean standard deviation calcu-
lation was used to compare the blend profiles
obtained with the various transformations. Fig. 8
shows the profiles that are obtained by using the
entire wavelength range of 1100–2500 nm. Here,
the resultant mean standard deviation is plotted
against the total process time in seconds with the
vertical line at 300 s indicating the screening
portion of the process which divides blending
phases I and II. Similar profiles are obtained
with all the transformations used, that is, higher
standard deviations are obtained at the start of
the blending process and in all cases there ap-
pears to be a more stable mean after the screen-

ing step. This may suggest that Phase II of the
blending protocol is unnecessary. However, note
that there is still some variability in the mean
standard deviation obtained during Phase II, es-
pecially with the second derivative transform
(part (d)).

The second approach is to calculate the dis-
similarity of the blend spectra with respect to
specified time points at which the blend is con-
sidered to be homogeneous. The time points pro-
vided for this exercise were 1620, 1740 and 1860
s. Although not the last three time points, they
appear to be well within a homogenous range as
far as could be established. The resultant blend
profiles are shown in Fig. 9, with the calculations
encompassing the entire wavelength range of
1100–2500 nm. Similar blend profiles to those
observed with the mean standard deviation cal-
culations are obtained for all the transforms ex-
cept the second derivative. This is typical of the
case when too much noise is incorporated
through the second derivative transform as was
done in this case with the inclusion of the entire
spectral range. One of the potential advantages
of the dissimilarity type of approach to blend
profiling is that the calculation can be performed
for each of the spectra collected during the run
so that a visual evaluation of the extent of scat-
ter of individual readings may be obtained.

Taking this approach a step further, one can
calculate the dissimilarity of spectra compared to
the individual pure component spectra as op-
posed to a pre-defined time point(s). In this way
it may be possible to discern which components
are more homogenous than others. Fig. 10 shows
the split plot of dissimilarity values calculated
with respect to the four blend components
Avicel, Active, DCP and Explotab. Dissimilarity
values range from a minimum of 0, which indi-
cates that a spectrum is identical to the target
spectrum, i.e. there is no dissimilarity between
the two, while the maximum value of 1 indicates
that there is no similarity between a spectrum
and the target component spectrum. In Fig. 10,
the calculations were carried out on raw spectral
data using the entire wavelength range. The typi-
cal blend profiles are observed, although the dis-
similarity numbers plotted on the y-axis should
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only be used as a guide and not an absolute
indication of similarity. Once again the observa-
tion is made that the majority of the mixing is
accomplished prior to the screening step.

Taking into consideration the noise contribu-
tions observed with the second derivative in the
2300–2500 nm range, the obvious manner in
which to minimise this contribution is to restrict
the range to a relatively noise-free but informa-
tion rich region of the spectral domain. Although
the noise is more obvious with the second deriva-
tive transform, it is present in all other cases as it
is an intrinsic part of the manner in which the
data was collected and results primarily from the
light attenuation through the optic fibres. Re-
stricting the spectral range to that of 1500–1800
nm, the above calculations were repeated for
Blendc20. Fig. 11 shows the blend profiles using
the mean standard deviation calculations and
Fig. 12 shows the dissimilarity with respect to a
homogeneous mixture at times 1620, 1740 and
1860 s. All the standard deviation results provide
a similar blend profile. In this case the variability
has been reduced for the profile resulting from
the second derivative transform. Refer to Fig.
9(d) and Fig. 12(d) for a comparison of the
profiles obtained with the second derivative trans-
form over the two spectral regions. Once again
the blend appears to have reached homogeneity
by the end of Phase I of the blending process.
For the dissimilarity calculations shown in Fig.
12, similar conclusions may be reached with all
the transforms.

One additional comparison was carried out for
the transforms, shown in Fig. 13, whereby the
dissimilarity with respect to the pure component
spectra was calculated over the wavelength range
1500–1800 nm. The usual blend profiles are ob-
served for all treatments. An interesting observa-
tion was made with the second derivative
transform (see Fig. 13(d) which shows the split
plot of the individual dissimilarity calculations)
with respect to the DCP component. Calcium
Phosphate anhydrous dibasic is an inorganic
compound that does not have a very strong NIR
signature, as can be seen in Fig. 4. Using the
second derivative transform on this type of spec-

trum only serves to exaggerate the noise contribu-
tions, which are then carried through into the
dissimilarity calculations. Note that the extent of
variability of the other components is pretty con-
stant so when dealing with this type of com-
pounds one of the other transforms would be
recommended.

The consistent observation that can be made
with all the transforms and blend profiles ob-
tained in this study is that the majority of the
mixing appears to be accomplished during Phase
I of the process. Slight variability of the profiles
is observed for data collected over Phase II, how-
ever one of the more difficult tasks is to establish
the significance of that variability. How large
does the variance have to be in order to indicate
a significant demixing of the blender contents?
What level of variability in the calculated crite-
rion represents a normal level of profile devia-
tion? These questions are not easily answered
prior to the commencement of a blending run.

Moving onto the PCA approach to blend
profiling, Blendc20 was decomposed and the
scores plot is shown in Fig. 14 in a projection
defined by the first three principal components.
The figure is the result of a second derivative
transform (15 point Savitzky-Golay) over the
wavelength range 1100-2300 nm and clearly
shows the initial four stratified spectra, followed
by two clusters. One cluster represents the pre-
screen or Phase I data collected, while the post
screen cluster is the data collected during Phase II
of the process. This is consistent with the previ-
ous graphical representations of the blend profiles
in that clear distinctions are obvious in the two
phases. This difference is increased by the
milling/screening combination which changes the
particle size distribution of the blender contents
and is still contributing to the profiles even after
the corrective transforms. Another way of profil-
ing the blending process is to simply plot the first
score vector obtained in the PCA against the scan
or sample number as is shown in Fig. 15. This
too appears to be consistent with previous visual-
isations of the blend profiles in which the major-
ity of the mixing is completed prior to the screen
step.
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For the next PCA decomposition, ten scans of
each of the individual components were decom-
posed to obtain the loadings vectors, after which
the final ten spectra collected for each of the
replicate target blends were projected into the
same space. Fig. 16 shows the results of this PCA
decomposition and projections described by the
first three principal components. The wavelength
range used was 1500–1800 nm and a second
derivative transform (15 point Savitzky-Golay).
Only one general observation can be made quali-
tatively and that is that the target region contain-
ing the replicate blend experiments is located in
approximately the appropriate location of the te-
trahedron. It may be possible to gain more infor-
mation from quantitative approaches which will
be examined at a later date.

Given that four blends were monitored with the
same target composition it was possible to evalu-
ate the reproducibility of blend runs. Also it was
possible to test the theory that if data on one
blend run was available, could it be used for all
future blend determinations of the same target
composition. First, the last ten collected spectra
from the four target runs were merged and a PCA
decomposition was carried out using the same
second derivative and a wavelength range of
1500–1800 nm. Fig. 17 shows the three dimen-
sional scores plot that results. The ovals have
been provided by the authors to enhance interpre-
tation and to make even more obvious the resul-
tant groupings. Clearly, some batch to batch
differences do exist, however it should be noted
that the PCA algorithm serves to enhance differ-
ences present in the data. Also, from a scores plot
such as this, it is almost impossible to obtain a
level of significance of these differences. In order
to obtain an estimate of the level of significance of
the replicate differences observed, a PCA decom-
position was carried out on the spectral data
collected for the four replicate runs together with
Blendc1 and Blendc10. These two blends have
different compositions than the replicates and
should therefore provide a yardstick for the ob-
served differences. Fig. 18 shows the resultant
scores plot which shows that the difference be-
tween the different compositions are larger than

those between the replicate runs, which can no
longer be distinguished from each other. Similar
results are obtained with other transforms.

Another way of evaluating the significance of
the observed cluster differences is to construct a
SIMCA model on data collected for one of the
batches and use that model to predict the re-
sponses of the other blend runs. A model was
generated for Blendc20 using the second deriva-
tive over the wavelength range 1500–1800 nm.
The model was then used to predict the last ten
scans of the four target blend runs. The results of
this prediction are shown in Fig. 19, where the
horizontal line indicates the model threshold es-
tablished at a confidence level of 99%. Note that
only one of the scans was rejected by the con-
structed model which is consistent with the spe-
cified probability threshold (P=0.99). Comparing
this with a prediction of an entire blender run,
Blendc19 is used to generate the plot in Fig. 20,
it is seen that the spectra collected during Phase I
of the blending process are rejected by the model
and that the later scans are correctly identified as
being of the target composition. The conclusion
can therefore be made that for this target blend,
the data collected during one blend run can be
used to appropriately evaluate the blend homo-
geneity of other blending runs with the same
target composition.

Given that most pharmaceutical applications
and test methods have a suitable range of oper-
ability which are provided by the product specifi-
cations, and also given that it was shown above
that one blend run is comparable to another, the
next qualitative investigation was focused on the
ability of a SIMCA model to evaluate if blend
data was within specification or not. To accom-
plish this, the Active blends covering the range of
95–105% of target formulation were merged and
used to construct a SIMCA model. The spectral
data was over the wavelength range 1500–1800
nm was transformed using a second derivative (15
point smooth, 21 point derivative) and a model
was constructed using five principal components.
The remaining blend runs, 85 and 115% of target
formulation, were then used to test the con-
structed model. Fig. 21 is the resultant SIMCA
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prediction distance plot which shows the dis-
tances calculated for the data used to construct
the model (to the left of the dashed line and
below the solid horizontal line indicating the
model threshold) and the additional data used to
challenge the model (located to the right of the
dashed vertical line). The probability level for the
figure shown is 0.85, and this parameter can be
further adjusted to fine-tune the threshold.

The model was able to distinguish between the
within specification blends and those that would
be considered to be outside the stated specifica-
tion of 95–105% of target formulation. One
problem blend was discovered (circled in Fig. 21)
which was Blendc9, which upon investigation
was determined to have had the wrong amount
of Active added to the blender. Instead of the
expected amount of 4% indicated by the experi-
mental design, 3.33% was added. The actual level
is within the model range of 95–105% of target
and therefore should be passed by the model.
Note that due to the addition of a different
amount of Active, the proportions of all the
other components are different to those in the
experience set and thus some of the scans are
also failed. This is an example of both the ad-
vantage and disadvantage of a sample ma-
trix interrogation approach technique such as
NIR spectroscopy. On the one hand the method
was able to respond appropriately by passing
the problem batch, while on the other it flagged
that it was a problem blend thus initiating
a closer look at that run. Overall, the conclu-
sion can be made that construction of SIMCA
models to determine if blend compositions are
within a given specification range are a feasible
approach.

5. Conclusions

This communication has attempted to high-
light some of the concepts involved with blend
homogeneity determinations in a pharmaceutical
industry application. The designed experiments
have been used to generate a sufficient amount
of spectral data which was used here to evaluate

the utility of a variety of approaches to spectral
transformation and blend profiling. The consis-
tency of the blend profiles obtained here did not
aid inestablishing any advantages in using one
transform over another however is was noted
that using the second derivative Savitsky-Golay
transformation appeared to be more sensitive to
noise. Similarly the blend profiling approaches
used here did not show any appreciable differ-
ences. Clearly care does need to be taken when
contemplating this type of work in that the com-
bination of transform and blend profile criterion
should be compatible (for example, the second
derivative observation made here). It was shown
that with the construction of a SIMCA model on
data collected at the end point of one of the
blend runs, it was possible to predict a similar
end point for additional runs of the same com-
position. This indicates that if it can be shown
that the scale of the blending process is not sig-
nificant, it would be possible to use a small scale
synthetic blend of the target composition to con-
struct a profile or homogeneity end point model
which can then be used for real scale blending
operations. This will need to be experimentally
established at a future time. Additional insight
may be obtained when the quantitative ap-
proaches are examined for blend evaluation.
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